New York City Skyline and the Super Continent Pangaea
Friday, March 29, 2024
Home  >  Beams of light  >  Spectrum of lights  >  Technology  >  New York City Skyline and the Super Continent Pangaea

User Rating: 5 / 5

Star ActiveStar ActiveStar ActiveStar ActiveStar Active
 

NY_Skyline

 

Pangaea Fragments of the lost land of Pangaea are now stranded in the metropolis of Manhattan.  To understand how this modern skyline came to be and why these tall buildings cluster as they do, you need to look downwards instead of up.  Professor Iain Stewart, a geologist at Plymouth University, has been getting down and dirty in the foundations of skyscrapers in New York for Rise of the Continents, a new geology documentary series on BBC Two, and it is here that the clues to understanding New York's ancient past become clear.

NY_Skyline_Iain_Stewart

"New York's skyscrapers are built in two distinct clusters for a very good reason, one that is buried beneath each one of them," says Prof Stewart.  Below the busy streets of Manhattan, amongst the foundations of these giants, Professor Stewart was looking for a seemingly innocuous grey rock, known as the Manhattan schist.  "It's the minerals in these rocks that are really key to understanding the conditions under which they were formed. Like in a car where your various instrument clusters tell you how it is working, minerals tell us how the rock was formed, particularly at what temperature and depth."  New York skyline The island's skyscrapers are clustered in the financial district and Midtown.  The minerals in this rock can provide clues that help explain the shape of Manhattan's skyline, but also reveal the story of America's long lost history.

The former mountains of New York probably achieved heights similar to what we see in the Himalayas today, it's incredible to imagine mountains 15 times higher than highest skyscraper"  Prof Iain Stewart was looking for a mineral known as kyanite, a beautiful blue specimen commonly seen in the Manhattan. "Kyanite is a key mineral to identify, we know it only forms at very deep depths and under extensive pressure," says Prof Stewart. "It's like a fingerprint, revealing a wealth of information".  The presence of this mineral reveals that the Manhattan schist was compressed under incredibly high pressure over 300 million years ago.  The schist formed as a result of two enormous landmasses coming together to form a super continent, know as Pangaea.

NY_Skyline_Pangaea

This giant continent was made up of all the land on Earth, and at this time present day New York would have been very close to its centre.  As the two landmasses converged, the rocks at their margins were pushed together like an accordion, forcing mountains upwards. The Manhattan schist was buried 13km beneath this new mountain range. "The minerals give us a very clear indication that these rocks were formed at great depths at the bottom of a mountain range," says Charles Merguerian, professor of geology at Hofstra University in New York.  Prof Stewart explains: "The former mountains of New York probably achieved heights similar to what we see in the Himalayas today, it's incredible to imagine mountains 15 times higher than highest skyscraper on the skyline today." Being buried and compressed under such a vast mountain range has made the Manhattan schist an exceptionally hard rock.  The super continent that once embroiled New York, was eventually ripped apart. 100 million years later, the component parts of Pangaea began their long and arduous journeys to become the continents we see today.  After this split, fragments of the lost land of Pangaea were left behind, now stranded in today's modern metropolis of Manhattan as very hard schist. 

NY_Central_Park

Walking through Central Park, you will see children playing, couples sunbathing and families picnicking on rocks protruding through the surface of the park.  These rocks are Manhattan schist, part of that ancient supercontinent, fragments of Pangaea left behind when the continent split. They are just glimpses of what is below the surface in abundance in Downtown and Midtown.  And it is these fragments of very hard rock that provide the perfect foundations for New York's highest buildings. Where Manhattan schist can be found very close to the surface you can build high, and so Downtown and Midtown have become home to Manhattan's tallest buildings. Elsewhere the ancient continent has been eroded away, the ground cannot support such skyscrapers and the buildings are much lower in height. "Geology totally controls the skyline of New York in that the higher buildings are always found where the rock is close to the surface," says Prof Merguerian.  Tower One of the World Trade Center is the most recent icon in New York's majestic skyline, a skyline that become a symbol of the modern world despite its origins being rooted in a long, lost world.  "It's amazing to think that the modern city of New York has essentially been controlled by geology below and all that started with the construction of Pangaea" says Stewart.

Click Here to See Windows of the World Photograph Series